这个著名的统计学悖论,第一次听说的人很可能怀疑人生

2018-12-11 17:02:49 编辑:1107152099 来源: 浏览量:337我要评论

摘要:辛普森悖论就是当你把数据拆开细看的时候,细节和整体趋势完全不同的现象。

我们平时在做重大决策的时候,比如择校啊,选专业啊,总是会参考这些比较对象的硬指标,比如它们的录取率啊,就业率啊等等。像是,哪个学校的就业率高,我们就会去报考这个学校。


统计数字可以帮助我们了解这些比较对象的优劣,让我们做出明智的决策。不光是个人,公司和国家也是这样做决策的。那么这样做对吗?


其...实...不...对


今天我们就来介绍一个让人非常头疼,但非常有用的悖论,它会告诉你,很多时候统计数字相当不可靠,特别容易误导人。


先来看一个假设的例子。


小明生了慢粒白血病,她的失散多年的哥哥找到有2家比较好的医院,医院A和医院B供小明选择就医。


小明的哥哥多方打听,搜集了这两家医院的统计数据,它们是这样的:


医院A最近接收的1000个病人里,有900个活着,100个死了。


医院B最近接收的1000个病人里,有800个活着,200个死了。


作为对统计学懵懵懂懂的普通人来说,看起来最明智的选择应该是医院A对吧,病人存活率很高有90%啊!总不可能选医院B吧,存活率只有80%啊。


呵呵,如果小明的选择是医院A,那么她就中计了。


就这么说吧,如果医院A最近接收的1000个病人里,有100个病人病情很严重,900个病人病情并不严重。


在这100个病情严重的病人里,有30个活下来了,其他70人死了。所以病重的病人在医院A的存活率是30%。


而在病情不严重的900个病人里,870个活着,30个人死了。所以病情不严重的病人在医院A的存活率是96.7%。


在医院B最近接收的1000个病人里,有400个病情很严重,其中210个人存活,因此病重的病人在医院B的存活率是52.5%。


有600个病人病情不严重,590个人存活,所以病情不严重的病人在医院B的存活率是98.3%。


画成表格,就是这样的——


医院A:


病情

死亡

存活

总数

存活率

严重

70

30

100

30%

不严重

30

870

900

96.7%

合计

100

900

1000

90%


医院B:


病情

死亡

存活

总数

存活率

严重

190

210

400

52.5%

不严重

10

590

600

98.3%

合计

200

800

1000

80%



你可以看到,在区分了病情严重和不严重的病人后,不管怎么看,最好的选择都是医院B。但是只看整体的存活率,医院A反而是更好的选择了。所谓远看是汪峰,近看白岩松,就是这个道理。



这让人很抓狂。万一我们真的患上了什么病,又遇到了这种类似的情况,岂不是会让自己掉坑里?大韩民国这么多小明就是因为这个原因去世的吗?到底这是怎么回事?


实际上,我们刚刚看到的例子,就是统计学中著名的黑魔法之一——辛普森悖论(Simpson's paradox)。辛普森悖论最初是英国数学家爱德华·H·辛普森(Edward H. Simpson)在1951年发现的。


辛普森悖论就是当你把数据拆开细看的时候,细节和整体趋势完全不同的现象。



辛普森悖论:同一组数据,整体的趋势和分组后的趋势完全不同。


从统计学家的观点来看,出现辛普森悖论的原因是因为这些数据中潜藏着一个魔鬼——潜在变量(lurking variable),比如在上面这个例子里,潜在变量就是病情严重程度不同的病人的占比。


辛普森悖论在日常生活中层出不穷。


最著名的辛普森悖论的实例,就是1973年加利福尼亚大学伯克利分校性别歧视案的例子。


加利福尼亚大学伯克利分校


大家从表格里可以看到,如果只看整体录取率,那么男生的录取率是44%,女生的是35%。


不求甚解的话,一般人肯定会得出这样的结论——女生被歧视了。打算申请这所著名大学的女生要是看到这样的数据,八成肺都气炸了。


男生

女生



申请人数

录取人数

申请人数

录取人数

合计

8442

44%

4321

35%


别急,现在把上面的数据按照院系拆分,再来看看每个系的录取率。


院系

男生

女生

申请人数

录取比例

申请人数

录取比例

A

825

62%

108

82%

B

560

63%

25

68%

C

325

37%

593

34%

D

417

33%

375

35%

E

191

28%

393

24%

F

373

6%

341

7%


你可以看到,在6个院系的4个里,女生的录取率大于男生,女生只在2个院系里容易折戟。加利福尼亚大学伯克利分校的统计学教授 Peter Bickel 后来发现,如果按照这样的分类,女生实际上比男生的录取率还高一点点。


Bickel 认为,在这个案例中,辛普森悖论出现的原因是,女生更愿意申请那些竞争压力很大的院系(比如英语系),但是男生却更愿意申请那些相对容易进的院系(比如工程学系)。辛普森悖论真是太奇怪了。



再比如这个经典的佛罗里达死刑悖论。


1991年,科罗拉多大学的统计学家 Michael L. Radelet 和东北大学的社会学研究院主任 Glenn Pierce 重新查看了1976-1987年间美国佛罗里达州的谋杀案的审判数据,发现了重大的司法不公正事件。


从归总的数据来看,佛罗里达的法官在审判的时候并没有偏向白人,因为白人嫌疑人的死刑率甚至还比黑人高一些。


嫌疑人种族

死刑人数

非死刑人数

死刑百分比%

白人

53

430

11

黑人

15

176

7.9


但是,如果按照被害人的种族来分割数据的话,我们就会看到很不一样的结果了——黑人比白人更容易被判死刑。


被害人种族

嫌疑人种族

死刑人数

非死刑人数

死刑百分比%

白人

白人

53

414

11.3

白人

黑人

11

37

22.9

黑人

白人

0

16

0

黑人

黑人

4

139

2.8


现在你可以很明显地看出,不管被害人是什么种族,黑人比白人更有可能被判死刑。


这还不算。分类后的数据显示,如果受害人是白人,那么嫌疑人就更容易被判死刑。如果被害人是黑人,嫌疑人被判死刑的可能性很低。种族歧视昭然若揭啊。



所以,我们要怎样才能避免辛普森悖论呢?


答案是…很难。不少统计学家认为,辛普森悖论的存在,让我们不可能光用统计数字来推导准确的因果关系。


因为数据可以用各种各样的方式分类,然后再进行比较,所以理论上潜在变量无穷无尽,你总是可以用某个潜在变量得到某种结论。


而且对于那些不怀好意的人来说,他们很容易对数据进行拆分或者归总,得到一个对自己有利的指标,从而来迷惑甚至操纵他人。医学和社会学的研究者也常常会遇到辛普森悖论,从而得出错误的结论。



辛普森悖论完美地阐释了这句古老的哲学寓言:“假如一棵树在森林里倒下而没有人在附近听见,它有没有发出声音?”如果有一个邪恶的潜在变量逃脱了你的眼睛,那么统计数字得出的结论还可信吗?


我们能做的,就是仔细地研究分析各种影响因素,不要笼统概括地、浅尝辄止地看问题。


什么,你要我举个利用辛普森悖论操纵别人的例子?


很简单啊。那些常说“我是聪明的小朋友里最漂亮的,漂亮的小朋友里最聪明的”小孩,一般都是既不_____,也不_____的。


最新资讯

 
QQ在线咨询
关注微信公众号

码上扫一扫